sa se determine valoarea maxima a functiei
f(x)= x^2 + 5x + 4


Răspuns :

a = 1 > 0, functia are valoare minima

[tex]x_v = \frac{-b}{2a} = \frac{-5}{2} [/tex]
[tex]y_v = \frac{-delta}{4a} = \frac{-9}{4} [/tex]
Min ([tex] \frac{-5}{2} ; \frac{-9}{4} [/tex])