Răspuns :
Aplicam teorema sinusurilor:
[tex] \frac{a}{sinA} = \frac{b}{sinB}= \frac{c}{sinC}=2R\\ a=2RsinA\\ b=2RsinB\\ \frac{a^2-b^2}{a^2+b^2}= \frac{4R^2(sin^2A-sin^2B)}{4R^2(sin^2A+sin^2B)}= \\=\frac{sin^2A-sin^2B}{sin^2A+sin^2B}\\ cos2A=cos^2A-sin^2A=1-2sin^2A=\ \textgreater \ sin^2A= \frac{1-cos2A}{2}\\ \frac{sin^2A-sin^2B}{sin^2A+sin^2B}= \frac{cos2B-cos2A}{2-cos2A-2cos2B}=\\ = \frac{-2sin(A+B)sin(B-A)}{2-2cos(A+B)cos(A-B)} =\\ = \frac{2sin(A+B)sin(A-B)}{2-2cos(A+B)cos(A-B)} =\\ = \frac{sinCsin(A-B)}{1+cosCcos(A-B)} \\ Obs:A+B+C=180^0\\ [/tex]
[tex] \frac{a}{sinA} = \frac{b}{sinB}= \frac{c}{sinC}=2R\\ a=2RsinA\\ b=2RsinB\\ \frac{a^2-b^2}{a^2+b^2}= \frac{4R^2(sin^2A-sin^2B)}{4R^2(sin^2A+sin^2B)}= \\=\frac{sin^2A-sin^2B}{sin^2A+sin^2B}\\ cos2A=cos^2A-sin^2A=1-2sin^2A=\ \textgreater \ sin^2A= \frac{1-cos2A}{2}\\ \frac{sin^2A-sin^2B}{sin^2A+sin^2B}= \frac{cos2B-cos2A}{2-cos2A-2cos2B}=\\ = \frac{-2sin(A+B)sin(B-A)}{2-2cos(A+B)cos(A-B)} =\\ = \frac{2sin(A+B)sin(A-B)}{2-2cos(A+B)cos(A-B)} =\\ = \frac{sinCsin(A-B)}{1+cosCcos(A-B)} \\ Obs:A+B+C=180^0\\ [/tex]
Vă mulțumim că ați ales să vizitați platforma noastră dedicată Matematică. Ne bucurăm dacă informațiile oferite v-au fost de ajutor. Pentru orice întrebare sau clarificare suplimentară, echipa noastră vă stă la dispoziție. Revenirea dumneavoastră ne onorează – nu uitați să ne salvați în lista de favorite!