Răspuns :
Fie x²+x=a
E(x)=(a+1)²-a²-x²
E(x)=a²+2a+1-a²-x²
E(x)=2a+1-x²
E(x)=2(x²+x)+1-x²
E(x)=2x²+2x+1-x²
E(x)=x²+2x+1
E(x)=(x+1)²
=> E(x)=pătrat perfect
E(x)=(a+1)²-a²-x²
E(x)=a²+2a+1-a²-x²
E(x)=2a+1-x²
E(x)=2(x²+x)+1-x²
E(x)=2x²+2x+1-x²
E(x)=x²+2x+1
E(x)=(x+1)²
=> E(x)=pătrat perfect
Vezi rezolvarea in poza :))

Vă mulțumim că ați ales să vizitați platforma noastră dedicată Matematică. Ne bucurăm dacă informațiile oferite v-au fost de ajutor. Pentru orice întrebare sau clarificare suplimentară, echipa noastră vă stă la dispoziție. Revenirea dumneavoastră ne onorează – nu uitați să ne salvați în lista de favorite!