[tex]\it \ell_6 = R = 4\ cm
\\\;\\
\mathcal{P} = 6\cdot \ell = 6\cdot4 = 24\ cm[/tex]
Cele 3 diagonale mari împart hexagonul în 6 triunghiuri echilaterale.
[tex]\it \mathcal{A}_{\triangle} = \dfrac{\ell^2\sqrt3}{4} = \dfrac{4^2\sqrt3}{4} =\dfrac{4\cdot4\sqrt3}{4} = 4\sqrt3\ cm^2
\\\;\\ \\\;\\
\mathcal{A}_{hexagon} =6\cdot4\sqrt3=24\sqrt3\ cm^2[/tex]