Răspuns :
Observam ca atat numitorul cat si numaratorul tind catre 0, deci putem sa aplicam regula lui l'Hospital:
[tex] \lim_{n \to \00} \frac{ln(1+x^2}{5x^2} = \lim_{n \to \00} \frac{(ln(1+x^2))'}{(5x^2)'}= \lim_{n \to \00} \frac{ \frac{2x}{x^2+1} }{10x}= \lim_{n \to \00} ( \frac{2x}{1+x^2} \frac{1}{10x} )[/tex]
[tex] \lim_{n \to \00} (\frac{2x}{x^2+1} \frac{1}{10x} )= \lim_{n \to \00} \frac{1}{5(1+x^2)} = \frac{1}{5(0^2+1)} = \frac{1}{5} . [/tex]
Sper sa te ajute! :)
[tex] \lim_{n \to \00} \frac{ln(1+x^2}{5x^2} = \lim_{n \to \00} \frac{(ln(1+x^2))'}{(5x^2)'}= \lim_{n \to \00} \frac{ \frac{2x}{x^2+1} }{10x}= \lim_{n \to \00} ( \frac{2x}{1+x^2} \frac{1}{10x} )[/tex]
[tex] \lim_{n \to \00} (\frac{2x}{x^2+1} \frac{1}{10x} )= \lim_{n \to \00} \frac{1}{5(1+x^2)} = \frac{1}{5(0^2+1)} = \frac{1}{5} . [/tex]
Sper sa te ajute! :)
Vă mulțumim că ați ales să vizitați platforma noastră dedicată Matematică. Ne bucurăm dacă informațiile oferite v-au fost de ajutor. Pentru orice întrebare sau clarificare suplimentară, echipa noastră vă stă la dispoziție. Revenirea dumneavoastră ne onorează – nu uitați să ne salvați în lista de favorite!